题目内容
在△ABC中,“A<B”是“cos2A>cos2B”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:在三角形中,结合正弦定理,利用充分条件和必要条件的定义进行判断.
解答:
解:在三角形中,cos2A>cos2B等价为1-sin2A>1-sin2B,即sin2A<sin2B,则等价为sinA<sinB,
若A<B,则边a<b,由正弦定理
=
,得sinA<sinB.
若sinA<sinB,则正弦定理
=
,得a<b,根据大边对大角,可知A<B.
所以,“A<B”是“sinA<sinB”的充要条件.
即在△ABC中,“A<B”是“cos2A>cos2B”的充要条件,
故选C.
若A<B,则边a<b,由正弦定理
| a |
| sinA |
| b |
| sinB |
若sinA<sinB,则正弦定理
| a |
| sinA |
| b |
| sinB |
所以,“A<B”是“sinA<sinB”的充要条件.
即在△ABC中,“A<B”是“cos2A>cos2B”的充要条件,
故选C.
点评:本题主要考查了充分条件和必要条件的应用,利用正弦定理确定边角关系,注意三角形中大边对大角的关系的应用.
练习册系列答案
相关题目
若{an}是等差数列,则a1+a2+a3,a4+a5+a6,a7+a8+a9,…,a3n-2+a3n-1+a3n是( )
| A、一定不是等差数列 |
| B、一定是递增数列 |
| C、一定是等差数列 |
| D、一定是递减数列 |
已知a,b都是实数,则“a<b”是“a2<b2”的( )条件.
| A、充分不必要 |
| B、必要不充分 |
| C、充要 |
| D、既不充分也不必要 |
已知函数f(x)=
的值域是[0,+∞),则实数m的取值范围是( )
| mx2+(m-3)x+1 |
| A、m=1或m=9 |
| B、1≤m≤9 |
| C、m≥9或m≤1 |
| D、0≤m≤1或m≥9 |
若tanα=
,tanβ=
,则tan(α+β)=( )
| 1 |
| 2 |
| 1 |
| 3 |
A、
| ||
B、
| ||
| C、1 | ||
| D、2 |
在△ABC中,若B=120°,AC=
,则
=( )
| 3 |
| BC |
| sinA |
| A、2 | ||||
| B、1 | ||||
C、
| ||||
D、
|
设λ,μ∈R,下面叙述不正确的是( )
A、λ(μ
| ||||||||
B、(λ+μ)
| ||||||||
C、λ(
| ||||||||
D、λ
|