题目内容

12.已知数列{an}满足an+1-an=2n,且a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}+1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (I)由于数列{an}满足an+1-an=2n,且a1=1.可得n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,再利用等比数列的前n项和公式即可得出.
(II)bn=$\frac{{a}_{n}+1}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,利用“裂项求和”即可得出.

解答 解:(I)∵数列{an}满足an+1-an=2n,且a1=1.
∴n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1
=$\frac{{2}^{n}-1}{2-1}$=2n-1.
当n=1时也成立.
∴an=2n-1.
(II)bn=$\frac{{a}_{n}+1}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,
∴数列{bn}的前n项和Tn=$(\frac{1}{2-1}-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$
=1-$\frac{1}{{2}^{n+1}-1}$.

点评 本题考查了等比数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网