题目内容

用数学归纳法证明:(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn2,n∈N*
考点:数学归纳法
专题:证明题,不等式的解法及应用
分析:验证n=1、2时,不等式成立,假设(a12+a22+…+an-12)(b12+b22+…+bn-12)≥(a1b1+a2b2+…+an-1bn-12成立,证明(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn2,n∈N*.成立.
解答: 证明:①当n=1时,a12b12≥(a1b12显然成立;
②当n=2时,(a12+a22)(b12+b22)=a12b12+a22b22+a22b12+a12b22≥a12b12+a22b22+2a2b1a1b2=(a1b1+a2b22
③假设(a12+a22+…+an-12)(b12+b22+…+bn-12)≥(a1b1+a2b2+…+an-1bn-12成立,n∈N*
则(a12+a22+…+an2)(b12+b22+…+bn2
=[(a12+a22+…+an-12)+an2][(b12+b22+…+bn-12)+bn2]
=(a12+a22+…+an-12)(b12+b22+…+bn-12)+(a12+a22+…+an-12)bn2+(b12+b22+…+bn-12)an2+an2bn2
∵(a12+a22+…+an-12)bn2+(b12+b22+…+bn-12)an2
=a12bn2+a22bn2+…+an-12bn2+b12an2+b22an2+…+bn-12an2
=(a12bn2+b12an2)+(a22bn2+b22an2)+…+(an-12bn2+bn-12an2
≥2a1bnb1an+2a2bnb2an+…+2an-1bnbn-1an
=2(a1b1+a2b2+…+an-1bn-1)anbn
则原式≥(a12+a22+…+an-12)(b12+b22+…+bn-12)+2(a1b1+a2b2+…+an-1bn-1)anbn+an2bn2
≥(a1b1+a2b2+…+an-1bn-12+2(a1b1+a2b2+…+an-1bn-1)anbn+an2bn2
=(a1b1+a2b2+…+anbn2
即:(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn2
所以,(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn2,n∈N*
点评:数学归纳法首先要验证开始时成立,再通过假设前一个成立,推更多项成立的方法,化简非常重要.属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网