题目内容

4.设a,b∈R,函数f(x)=ax+b(0≤x≤1),则f(x)>0恒成立是a+2b>0成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:若f(x)>0,则满足$\left\{\begin{array}{l}{f(0)=b>0}\\{f(1)=a+b>0}\end{array}\right.$,即a+2b>0,即充分性成立,
反之不一定成立,
即f(x)>0恒成立是a+2b>0成立的充分不必要条件,
故选:A

点评 本题主要考查充分条件和必要条件的判断,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网