题目内容
14.已知函数f(x)=e-|x|+cosπx,给出下列命题:①f(x)的最大值为2;
②f(x)在(-10,10)内的零点之和为0;
③f(x)的任何一个极大值都大于1.
其中,所有正确命题的序号是①②③.
分析 根据已知中函数f(x)=e-|x|+cosπx,分析函数的最值,对称性,极值,进而可得答案.
解答 解:由$\lim_{x→±∞}{e}^{-\left|x\right|}$→0,故当x=0时,f(x)的最大值为2,故①正确;
函数f(x)=e-|x|+cosπx,满足f(-x)=f(x),
故函数为偶函数;
其零点关于原点对称,故f(x)在(-10,10)内的零点之和为0,故②正确;
当cosπx取极大值1时,函数f(x)=e-|x|+cosπx取极大值,但均大于1,故③正确;
故答案为:①②③
点评 本题以命题的真假判断与应用为载体,考查了函数的最值,函数的极值,函数的零点,函数的奇偶性等知识点,难度中档.
练习册系列答案
相关题目
14.集合U={1,2,3,4,5,6},A={1,3,5},B={2,4,5},则A∩∁UB=( )
| A. | {1} | B. | {1,3} | C. | {1,3,6} | D. | {2,4,5} |
2.将号码分别为1、2、…、6的六个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,号码为a,放回后,乙从此袋再摸出一个球,其号码为b,则使不等式a-2b+2>0成立的事件发生的概率等于( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
4.设a,b∈R,函数f(x)=ax+b(0≤x≤1),则f(x)>0恒成立是a+2b>0成立的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 即不充分也不必要条件 |