题目内容

1.如图示,边长为4的正方形ABCD与正三角形ADP所在平面互相垂直,M、Q分别是PC,AD的中点.
(1)求证:PA∥面BDM
(2)求多面体P-ABCD的体积
(3)试问:在线段AB上是否存在一点N,使面PCN⊥面PQB?若存在,指出N的位置,若不存在,请说明理由.

分析 (1)连接AC交BD于点O,连接MO,由正方形ABCD知O为AC的中点,由M为PC的中点,知MO∥PA,由此能够证明PA∥平面MBD
(2)利用棱锥的体积公式,可得结论.
(3)存在点N,当N为AB中点时,平面PQB⊥平面PNC.由四边形ABCD是正方形,Q为AD的中点,知BQ⊥NC,由此能够证明平面PCN⊥平面PQB.

解答 (1)证明:连接AC交BD于点O,连接MO,
由正方形ABCD知O为AC的中点,
∵M为PC的中点,
∴MO∥PA,
∵MO?平面MBD,PA?平面MBD,
∴PA∥平面MBD
(2)解:多面体P-ABCD的体积=$\frac{1}{3}×\frac{1}{2}×4×4×2\sqrt{3}$=$\frac{16\sqrt{3}}{3}$;
(3)解:存在点N,当N为AB中点时,平面PQB⊥平面PNC,
∵四边形ABCD是正方形,Q为AD的中点,∴BQ⊥NC.
由(1)知,PQ⊥平面ABCD,NC?平面ABCD,∴PQ⊥NC,
又BQ∩PQ=Q,∴NC⊥平面PQB,
∵NC?平面PCN,
∴平面PCN⊥平面PQB.

点评 本题考查直线与平面平行的证明,考查四棱锥体积的求法,考查平面与平面垂直的证明,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网