题目内容
17.在以O为中心,F1,F2为焦点的双曲线上存在一点M,满足|$\overrightarrow{M{F}_{1}}$|=2|$\overrightarrow{MO}$|=2|$\overrightarrow{M{F}_{2}}$|,则该双曲线的离心率为( )| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
分析 由双曲线的定义可得2a=|MF1|-|MF2|=|MF2|,进而在△F1OM中,F1O=c,F1M=4a,OM=2a,在△F1F2M中,F1F2=2c,F1M=4a,F2M=2a,结合余弦定理,结合离心率公式计算即可得到所求值.
解答 解:设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
由|MF1|=2|MO|=2|MF2|,
由双曲线的定义可得2a=|MF1|-|MF2|=|MF2|,
在△F1OM中,|F1O|=c,|F1M|=4a,|OM|=2a,
则cos∠MF1O=$\frac{16{a}^{2}+{c}^{2}-4{a}^{2}}{2•4a•c}$,
在△F1F2M中,|F1F2|=2c,|F1M|=4a,|F2M|=2a,
则cos∠MF1O=$\frac{16{a}^{2}+4{c}^{2}-4{a}^{2}}{2•4a•2c}$,
由∠MF1O=∠MF1O得:$\frac{16{a}^{2}+{c}^{2}-4{a}^{2}}{2•4a•c}$=$\frac{16{a}^{2}+4{c}^{2}-4{a}^{2}}{2•4a•2c}$,
整理得c2=6a2,
即e2=$\frac{{c}^{2}}{{a}^{2}}$=6,
故e=$\sqrt{6}$,
故选:D.
点评 本题考查的知识点是双曲线的简单性质,主要是考查离心率的求法,注意运用余弦定理,构造关于a,c的方程是解答的关键,难度中档.
练习册系列答案
相关题目
12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点是F(-c,0),斜率为2的直线l过点P并与两条渐近线交于A,B两点(A,B位于x轴同侧),且S△BOF=4S△AOF,则双曲线的离心率是( )
| A. | $\frac{\sqrt{109}}{3}$ | B. | $\frac{10}{3}$ | C. | 3 | D. | $\frac{4}{3}$ |