题目内容

8.在△ABC中,角A、B、C的对边分别为a、b、c,且A=$\frac{π}{3}$.
(1)若b=2,△ABC的面积为3$\sqrt{3}$,求a的值;
(2)若2c2-2a2=b2,求证:2sin(C-$\frac{π}{3}$)=sinB.

分析 (1)根据面积公式计算c,再利用余弦定理计算a.
(2)利用正弦定理将边化角,使用和差化积公式化简即可得出结论.

解答 解:(1)在△ABC中,∵S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}c}{2}$=3$\sqrt{3}$,∴c=6.
由余弦定理得a2=b2+c2-2bccosA=4+36-12=28.
∴a=$\sqrt{28}$=2$\sqrt{7}$.
(2)∵2c2-2a2=b2,∴2(c+a)(c-a)=b2
∴2(sinC+sinA)(sinC-sinA)=sin2B.
∴2×2sin$\frac{A+C}{2}$cos$\frac{C-A}{2}$×2cos$\frac{A+C}{2}$sin$\frac{C-A}{2}$=sin2B.
即2sin(A+C)sin(C-A)=sin2B.
∵sin(A+C)=sinB≠0,
∴2sin(C-A)=sinB,
即2sin(C-$\frac{π}{3}$)=sinB.

点评 本题考查了正弦定理,余弦定理,三角函数的恒等变换,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网