题目内容

5.设α、β、γ∈(0,$\frac{π}{2}$)且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,求证:α+β+γ=$\frac{π}{4}$.

分析 利用两角和的正切公式,求得tan(α+γ)=$\frac{2}{3}$,可得α+γ为锐角,再求得tan[(α+γ)+β]=1,可得结论成立.

解答 解:∵α、β、γ∈(0,$\frac{π}{2}$)且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,∴tan(α+γ)=$\frac{tanα+tanγ}{1-tanαtanγ}$=$\frac{2}{3}$>0,∴α+γ为锐角.
∵tan[(α+γ)+β]=$\frac{tan(α+γ)+tanβ}{1-tan(α+γ)tanβ}$=$\frac{\frac{2}{3}+\frac{1}{5}}{1-\frac{2}{3}•\frac{1}{5}}$=1,∴α+β+γ=$\frac{π}{4}$.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网