题目内容
已知数列{an}和{bn}满足a1=2,an+1=
,bn=an-1,数列{bn}的前n和为Sn.
(1)求数列{bn}的通项公式;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn;
(3)求证:对任意的n∈N*有
≤S2n<nan-
成立.
| 2an-1 |
| an |
(1)求数列{bn}的通项公式;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn;
(3)求证:对任意的n∈N*有
| nan+1 |
| 2 |
| 1 |
| 2 |
考点:数列递推式,数列与不等式的综合
专题:综合题,点列、递归数列与数学归纳法
分析:(1)由已知条件推导出{
}是以1为首项,1为公差的等差数列,由此能求出bn=
.
(2)由已知条件推导出Tn=S2n-Sn=
+
+…+
,Tn+1=
+
+…
+
+
,由此利用作差法能证明Tn+1>Tn.
(3)由an=
+1,推导出
=
+1,S2n=1+
+
+…+
,nan-
=n+1.由此能证明对任意的n∈N*有
≤S2n<nan-
成立.
| 1 |
| an-1 |
| 1 |
| n |
(2)由已知条件推导出Tn=S2n-Sn=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
(3)由an=
| 1 |
| n |
| nan+1 |
| 2 |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 2 |
| nan+1 |
| 2 |
| 1 |
| 2 |
解答:
(1)解:∵an+1=
,
∴an+1-1=
,
∴
-
=1
∵a1=2,
∴{
}是以1为首项,1为公差的等差数列,
∴
=n,
∵bn=an-1,
∴bn=
.
(2)证明:∵Sn=1+
+
+••+
,
∴Tn=S2n-Sn=
+
+…+
,
Tn+1=
+
+…
+
+
,
∴Tn+1-Tn=
+
-
>
+
-
=0,
∴Tn+1>Tn.
(3)证明:由(1)知an=
+1,
∴
=
=
+1,
S2n=1+
+
+…+
,
nan-
=n(
+1)=n+1.
∵n∈N*,
∴对任意的n∈N*有
≤S2n<nan-
成立.
| 2an-1 |
| an |
∴an+1-1=
| an-1 |
| an |
∴
| 1 |
| an+1-1 |
| 1 |
| an-1 |
∵a1=2,
∴{
| 1 |
| an-1 |
∴
| 1 |
| an-1 |
∵bn=an-1,
∴bn=
| 1 |
| n |
(2)证明:∵Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
∴Tn=S2n-Sn=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
Tn+1=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
∴Tn+1-Tn=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
∴Tn+1>Tn.
(3)证明:由(1)知an=
| 1 |
| n |
∴
| nan+1 |
| 2 |
n(
| ||
| 2 |
| n |
| 2 |
S2n=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
nan-
| 1 |
| 2 |
| 1 |
| n |
∵n∈N*,
∴对任意的n∈N*有
| nan+1 |
| 2 |
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法和作差法的合理运用.
练习册系列答案
相关题目
等差数列{an}中,a1=2,a2+a4=8,则a3+a7+a8=( )
| A、15 | B、18 | C、21 | D、24 |
在△ABC中,内角A,B,C的对边分别是a,b,c,若2sinA=sinC,a2,c2,b2成等差数列,则B=( )
| A、30° | B、60° |
| C、120° | D、150° |