题目内容

某软件公司研发了多款软件,其中A,B,C三种软件供高中生使用,经某高中使用一学年后,该公司调查了这个学校同一年级四个班的使用情况,从各班抽取的样本人数如下表:
班级
人数 3 2 3 4
(1)从这12人中随机抽取2人,求这2人恰好来自同一个班级的概率;
(2)从这12人中,指定甲、乙、丙3人为代表,已知他们每人选择一款软件,其中选A,B两款软件的概率都是
1
6
,且他们选择A,B,C任一款软件都是相互独立的.设这3名学生中选择软件C的人数为ξ,求ξ的分布列和数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:概率与统计
分析:(1)利用互斥事件的概率公式能求出从这12人中随机抽取2人,求这2人恰好来自同一个班级的概率.
(2)每个人选软件C的概率均为
2
3
,由题意知ξ=0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答: 解:(1)设“从这12人中随机抽取2人,求这2人恰好来自同一个班级”为事件M,
P(M)=
C
2
3
+
C
2
2
+
C
2
3
+
C
2
4
C
2
12
=
13
66
(4分)
(2)由题意知ξ=0,1,2,3,每个人选软件C的概率均为
2
3

P(ξ=0)=(
1
3
)3=
1
27

P(ξ=1)=
C
1
3
(
1
3
)2
2
3
=
2
9

P(ξ=2)=
C
2
3
1
3
(
2
3
)2=
4
9

P(ξ=3)=(
2
3
)3=
8
27
,(10分)
∴ξ的分布列如下:
ξ 0 1 2 3
P
1
27
2
9
4
9
8
27
E(ξ)=0×
1
27
+1×
2
9
+2×
4
9
+3×
8
27
=2
.(14分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网