题目内容

11.四棱柱ABCD-A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,则CC1与BD所成角为(  )
A.30°B.45°C.60°D.90°

分析 由已知推导出CC1∥BB1,从而∠DBB1是CC1与BD所成角(或所成角的补角),由已知得$\overrightarrow{D{B}_{1}}$=$\overrightarrow{DA}+\overrightarrow{AB}+\overrightarrow{B{B}_{1}}$,设A1A=AB=AD=1,则BD=1,求出DB1=$\sqrt{2}$,由此能求出CC1与BD所成角.

解答 解:四棱柱ABCD-A1B1C1D1中,
∵∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,
$\overrightarrow{D{B}_{1}}$=$\overrightarrow{DA}+\overrightarrow{AB}+\overrightarrow{B{B}_{1}}$,
∴CC1∥BB1,∴∠DBB1是CC1与BD所成角(或所成角的补角),
设A1A=AB=AD=1,则BD=1,
$\overrightarrow{D{B}_{1}}$2=${\overrightarrow{DA}}^{2}+{\overrightarrow{AB}}^{2}+\overrightarrow{B{{B}_{1}}^{2}}$+2|$\overrightarrow{DA}$|•|$\overrightarrow{AB}$|cos120°+2|$\overrightarrow{DA}$|•|$\overrightarrow{B{B}_{1}}$|cos120°+2|$\overrightarrow{AB}$|•|$\overrightarrow{B{B}_{1}}$|cos60°
=1+1+1-1-1+1=2,
∴DB1=$\sqrt{2}$,
∴$D{B}^{2}+B{{B}_{1}}^{2}=D{{B}_{1}}^{2}$,
∴∠DBB1=90°,
∴CC1与BD所成角为90°.
故选:D.

点评 本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网