题目内容

已知{an}是正数组成的数列,a1=1,且点(
an
,an+1)(n∈N*)在函数y=x2+1的图象上.数列{bn}满足b1=1,bn+1=bn+2an
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=an•bn,求{cn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得数列{an}是以1为首项,公差为1的等差数列,由此能求出an=1+(a-1)×1=n,从而bn+1-bn=2n.由此利用累加法能求出bn
(2)由Cn=n2n-n,利用分组求和法和错位相减法能求出{cn}的前n项和Sn
解答: 解:(1)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以数列{an}是以1为首项,公差为1的等差数列.
故an=1+(a-1)×1=n  
从而bn+1-bn=2n.∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n-1+2n-2+…+2+1
=
1-2n
1-2
=2n-1
(2)Cn=n2n-n
Tn=1×21+2×22+3×23+…+n×2n,①
则2Tn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得:-Tn=2+22+23+…+2n-n×2n+1
=
2(1-2n)
1-2
-n×2n+1
=(1-n)•2n+1-2,
由错位相减法可得Tn=(n-1)•2n+1+2
从而Sn=(n-1)•2n+1+2-
n(n+1)
2
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意累加法、分组求和法和错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网