题目内容

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象关于y轴对称,该函数的部分图象如图所示,△PMN是以MN为斜边的等腰直角三角形,且$|MN|•|MP|=2\sqrt{2}$,则f(1)的值为0.

分析 由题意,求出结合函数的图象,图象关于y轴对称,φ=$\frac{π}{2}$,△PMN是以MN为斜边的等腰直角三角形,可得|PM|•sin45°=$\frac{1}{2}$|MN|,且$|MN|•|MP|=2\sqrt{2}$,求解|MN|和A,即得函数f(x)=Asin(ωx+φ)

解答 解:由题意,图象关于y轴对称,φ=$\frac{π}{2}$,
∵△PMN是以MN为斜边的等腰直角三角形,可得|PM|•sin45°=$\frac{1}{2}$|MN|,且$|MN|•|MP|=2\sqrt{2}$,
解得:|MN|=2,|PM|=$\sqrt{2}$
在等腰三角形PMN中,可求的△PMN的高为1,即P点的纵坐标是1,
故得A=1,
T=2|MN|=4,
∴$ω=\frac{2π}{4}=\frac{π}{2}$
∴函数f(x)=Asin(ωx+φ)=sin($\frac{π}{2}x+\frac{π}{2}$)=$cos(\frac{π}{2}x)$,
当x=1时,即f(1)=cos$\frac{π}{2}$=0.
故答案为0.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网