题目内容

若sin(
π
4
+α)=
2
5
,则sin2α等于(  )
A、-
8
25
B、
8
25
C、-
17
25
D、
17
25
考点:二倍角的余弦
专题:计算题,三角函数的求值
分析:先根据两角和的正弦函数公式及特殊角的三角函数值化简后,得到sinα+cosα的值,然后两边平方,利用同角三角函数间的基本关系化简后,即可求出sin2α的值.
解答: 解:∵sin(
π
4
+α)=sin
π
4
cosα+cos
π
4
sinα=
2
2
(sinα+cosα)=
2
5

∴sinα+cosα=
2
2
5

两边平方得:1+sin2α=
8
25

∴sin2α=-
17
25

故选:C.
点评:本题考查学生灵活运用两角和的正弦函数公式、二倍角的正弦函数公式及同角三角函数间的基本关系化简求值,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网