题目内容

设集合A={(x,y)|y=x2+ax+2},B={(x,y)|y=x+1,0≤x≤2},A∩B≠∅,求实数a的取值范围.
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:问题转化为方程y=x2-ax+2与方程y=x+1在0≤x≤2范围内有解.
解答: 解:问题转化为方程y=x2-ax+2与方程y=x+1在0≤x≤2范围内有解.
则:令g(x)=x2-(a+1)x+1=0在0≤x≤2内有根.
所以①0≤
a+1
2
≤2;②g(0)≥0;③g(2)≥0;④△=(a+1)2-4≥0
解上四个不等式得:1≤a≤
3
2
点评:本题考查集合的包含关系判断及应用,考查学生分析解决问题的能力,问题转化为方程y=x2-ax+2与方程y=x+1在0≤x≤2范围内有解是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网