题目内容

4.设O为锐角△ABC的外心(三角形外接圆的圆心),$\overrightarrow{AO}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,则cos∠BAC等于(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{4}$

分析 分别在$\overrightarrow{AO}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$两边乘以$\overrightarrow{AB}$,$\overrightarrow{AC}$,联立方程组解出.

解答 解:取AB中点D,AC中点E,并连接OD,OE,则OD⊥AB,OE⊥AC.
∴cos∠BAO=$\frac{|\overrightarrow{AD}|}{|\overrightarrow{AO}|}=\frac{|\overrightarrow{AB}|}{2|\overrightarrow{AO}|}$,cos∠CAO=$\frac{|\overrightarrow{AE}|}{|\overrightarrow{AO}|}$=$\frac{|\overrightarrow{AC}|}{2|\overrightarrow{AO}|}$.
∴$\overrightarrow{AO}•\overrightarrow{AB}$=|$\overrightarrow{AO}$|•|$\overrightarrow{AB}$|cos∠BAO=$\frac{1}{2}$|$\overrightarrow{AB}$|2,$\overrightarrow{AO}•\overrightarrow{AC}$=|$\overrightarrow{AO}$|•|$\overrightarrow{AC}$|cos∠CAO=$\frac{1}{2}$|$\overrightarrow{AC}$|2
∵$\overrightarrow{AO}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,
∴$\overrightarrow{AO}•\overrightarrow{AB}$=$\frac{1}{5}$|$\overrightarrow{AB}$|2+$\frac{2}{5}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos∠BAC,
$\overrightarrow{AO}•\overrightarrow{AC}$=$\frac{1}{5}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos∠BAC+$\frac{2}{5}$|$\overrightarrow{AC}$|2
∴$\frac{1}{2}$|$\overrightarrow{AB}$|2=$\frac{1}{5}$|$\overrightarrow{AB}$|2+$\frac{2}{5}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos∠BAC,
$\frac{1}{2}$|$\overrightarrow{AC}$|2=$\frac{1}{5}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos∠BAC+$\frac{2}{5}$|$\overrightarrow{AC}$|2
∴3|$\overrightarrow{AB}$|=4|$\overrightarrow{AC}$|cos∠BAC,|$\overrightarrow{AC}$|=2|$\overrightarrow{AB}$|cos∠BAC.
∴cos2∠BAC=$\frac{3}{8}$,∵$∠BAC<\frac{π}{2}$,
∴cos∠BAC=$\sqrt{\frac{3}{8}}$=$\frac{\sqrt{6}}{4}$.
故选:D.

点评 本题考查了平面向量数量积的计算,构造方程组是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网