题目内容
9.$\frac{1}{2}$-sin215°的值是( )| A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
分析 由条件利用半角公式,求得所给式子的值.
解答 解:$\frac{1}{2}$-sin215°=$\frac{1}{2}$-$\frac{1-cos30°}{2}$=$\frac{1}{2}$cos30°=$\frac{\sqrt{3}}{4}$,
故选:D.
点评 本题主要考查半角公式的应用,属于基础题.
练习册系列答案
相关题目
17.数列-1,a,b,c,-9成等比数列,则实数b的值为( )
| A. | ±3 | B. | 3 | C. | -3 | D. | 以上都不对 |
4.设O为锐角△ABC的外心(三角形外接圆的圆心),$\overrightarrow{AO}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,则cos∠BAC等于( )
| A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{6}}{4}$ |
14.设f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x≥0}\\{lo{g}_{2}(-x),x<0}\\{\;}\end{array}\right.$,若f(a)>f(-a),则实数a的取值范围是( )
| A. | (-∞,$\frac{1-\sqrt{5}}{2}$)∪(0,$\frac{\sqrt{5}-1}{2}$) | B. | ($\frac{1-\sqrt{5}}{2}$,0)∪($\frac{\sqrt{5}-1}{2}$,+∞) | C. | (-∞,$\frac{1-\sqrt{5}}{2}$)∪(0,$\frac{1+\sqrt{5}}{2}$) | D. | ($\frac{1-\sqrt{5}}{2}$,0)∪($\frac{1+\sqrt{5}}{2}$,+∞) |
18.在(-π,π)内使sinx>cosx成立的x的取值范围是( )
| A. | ($\frac{π}{4}$,π)∪(-$\frac{π}{2}$,-$\frac{π}{4}$) | B. | ($\frac{π}{4}$,π) | C. | ($\frac{π}{4}$,π)∪(-π,-$\frac{3π}{4}$) | D. | (-$\frac{3π}{4}$,π) |
19.过点A(3,2),B(4,3)的直线方程是( )
| A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |