题目内容

13.有一个五边形ABCDE,若把顶点A,B,C,D,E涂上红、黄、绿三种颜色中的一种,使得相邻的顶点所涂的颜色不同,则共有30种不同的涂色方法.

分析 本题需要分类来解答,首先A选取一种颜色,有3种情况.如果A的两个相邻点颜色相同,2种情况,这时最后两个边也有2种情况;如果A的两个相邻点颜色不同,2种情况,最后两个边有3种情况.根据计数原理得到结果.

解答 解:由题意知本题需要分类来解答,
首先A选取一种颜色,有3种情况.
如果A的两个相邻点颜色相同,2种情况;
这时最后两个边也有2种情况;
如果A的两个相邻点颜色不同,2种情况;
这时最后两个边有3种情况.
∴方法共有3(2×2+2×3)=30种.
故答案为:30.

点评 对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网