题目内容
3.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$,则目标函数z=2x+3y+4的最小值为( )| A. | 10 | B. | 11 | C. | 12 | D. | 27 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x+y-3=0}\\{2x-y-3=0}\end{array}\right.$,解得A(2,1),
化目标函数z=2x+3y+4为$y=-\frac{2}{3}x+\frac{z-4}{3}$,
由图可知,当直线$y=-\frac{2}{3}x+\frac{z-4}{3}$过A时,直线在y轴上的截距最小,z有最小值为11.
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
14.记不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$所表示的平面区域为D,若直线y=a(x+1)与区域D有公共点,则实数a的取值范围为( )
| A. | ($\frac{1}{2}$,$\frac{4}{3}$) | B. | [$\frac{4}{3}$,4] | C. | [$\frac{4}{3}$,3) | D. | [$\frac{1}{2}$,4] |
12.
如图所示,M,N是函数y=2sin(ωx+ϕ)(ω>0)图象与x轴的交点,点P在M,N之间的图象上运动,当△MPN面积最大时,PM⊥PN,则ω=( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | 8 |