题目内容
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=1-
bn.
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Tn.
| 1 |
| 2 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Tn.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件得a3=5,a5=9,由此求出an=a5+(n-5)d=2n-1;由Sn=1-
bn,推导出{bn}是等比数列,b1=
,q=
,由此求出bn=
•(
)n-1=
.
(2)由(1)知cn=anbn=
=
,由此利用错位相减法能求出数列{cn}的前n项和Tn.
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)由(1)知cn=anbn=
| 2(2n-1) |
| 3n |
| 4n-2 |
| 3n |
解答:
解:(1)∵等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,
∴a3=5,a5=9,
∴d=
=2,∴an=a5+(n-5)d=2n-1,
又当n=1时,b1=S1=1-
b1,解得b1=
,
当n≥2时,bn=Sn-Sn-1=
(bn-1-bn),
∴
=
,n≥2,
∴{bn}是等比数列,b1=
,q=
,
∴bn=
•(
)n-1=
.
(2)由(1)知cn=anbn=
=
,
∴Tn=
+
+
+…+
,①
Tn=
+
+
+…+
,②
①-②,得
Tn=
+
+
+…+
-
=
+4×
-
=2-
,
∴Tn=3-
.
∴a3=5,a5=9,
∴d=
| 9-5 |
| 5-3 |
又当n=1时,b1=S1=1-
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,bn=Sn-Sn-1=
| 1 |
| 2 |
∴
| bn |
| bn-1 |
| 1 |
| 3 |
∴{bn}是等比数列,b1=
| 2 |
| 3 |
| 1 |
| 3 |
∴bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)由(1)知cn=anbn=
| 2(2n-1) |
| 3n |
| 4n-2 |
| 3n |
∴Tn=
| 2 |
| 3 |
| 6 |
| 32 |
| 10 |
| 33 |
| 4n-2 |
| 3n |
| 1 |
| 3 |
| 2 |
| 32 |
| 6 |
| 33 |
| 10 |
| 34 |
| 4n-2 |
| 3n+1 |
①-②,得
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 32 |
| 4 |
| 33 |
| 4 |
| 3n |
| 4n-2 |
| 3n+1 |
=
| 2 |
| 3 |
| ||||
1-
|
| 4n-2 |
| 3n+1 |
=2-
| 4n+10 |
| 3n+1 |
∴Tn=3-
| 2n+5 |
| 3n |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目