题目内容
18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点为F1、F2,在双曲线上存在点P满足3|$\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|≤2|\overrightarrow{{F_1}{F_2}}$|,则双曲线的渐近线的斜率$\frac{b}{a}$的取值范围是( )| A. | $0<\frac{b}{a}≤\frac{3}{2}$ | B. | $\frac{b}{a}≥\frac{3}{2}$ | C. | $0<\frac{b}{a}≤\frac{{\sqrt{5}}}{2}$ | D. | $\frac{b}{a}≥\frac{{\sqrt{5}}}{2}$ |
分析 由OP为△F1PF2的中线,可得$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{OP}$,结合双曲线的范围,可得|$\overrightarrow{OP}$|≥a,|$\overrightarrow{{F}_{1}{F}_{2}}$|=2c,即有6a≤4c,结合双曲线的a,b,c的关系,可得a,b的不等关系,由渐近线的斜率,即可得到所求范围.
解答 解:由OP为△F1PF2的中线,可得:
$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{OP}$,
由3|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|≤2|$\overrightarrow{{F}_{1}{F}_{2}}$|,
可得6|$\overrightarrow{OP}$|≤2|$\overrightarrow{{F}_{1}{F}_{2}}$|,
由|$\overrightarrow{OP}$|≥a,|$\overrightarrow{{F}_{1}{F}_{2}}$|=2c,
可得6a≤4c,
即为9a2≤4c2,
由c2=a2+b2,
可得5a2≤4b2,
可得$\frac{b}{a}$≥$\frac{\sqrt{5}}{2}$.
故选:D.
点评 本题考查双曲线的方程和性质,主要是渐近线的斜率和双曲线的范围,考查中点向量的表示以及向量的模的定义,以及运算能力,属于中档题.
练习册系列答案
相关题目
8.已知cos($α-\frac{π}{3}$)-cosα=$\frac{1}{3}$,则cos($α+\frac{π}{3}$)的值为( )
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
13.刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?”意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为( )(注:3丈=5步,1里=300步)
| A. | 4里55步 | B. | 3里125步 | C. | 7里125步 | D. | 6里55步 |
7.已知三棱锥O-ABC的顶点A,B,C都在半径为3的球面上,O是球心,∠AOB=150°,当△AOC与△BOC的面积之和最大时,三棱锥O-ABC的体积为( )
| A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{4}$ |