ÌâÄ¿ÄÚÈÝ
¸ø³öÒÔϼ¸¸öÃüÌ⣬ÆäÖÐÊÇÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬¦È¡Ê£¨
£¬
£©£¬Ôòf£¨sin¦È£©£¾f£¨cos¦È£©£»
¢ÚÈôÈñ½Ç¦Á¡¢¦ÂÂú×ãcos¦Á£¾sin¦Â£¬Ôò¦Á+¦Â£¼
£»
¢ÛÔÚ¡÷ABCÖУ¬¡°A£¾B¡±ÊÇ¡°cosA£¼cosB¡±³ÉÁ¢µÄ³äÒªÌõ¼þ£»
¢ÜÒªµÃµ½º¯Êýy=sin£¨
-
£©µÄͼÏó£¬Ö»Ð轫y=sin
µÄͼÏóÏòÓÒÆ½ÒÆ
¸öµ¥Î»£®
¢ÙÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬¦È¡Ê£¨
| ¦Ð |
| 4 |
| ¦Ð |
| 2 |
¢ÚÈôÈñ½Ç¦Á¡¢¦ÂÂú×ãcos¦Á£¾sin¦Â£¬Ôò¦Á+¦Â£¼
| ¦Ð |
| 2 |
¢ÛÔÚ¡÷ABCÖУ¬¡°A£¾B¡±ÊÇ¡°cosA£¼cosB¡±³ÉÁ¢µÄ³äÒªÌõ¼þ£»
¢ÜÒªµÃµ½º¯Êýy=sin£¨
| x |
| 2 |
| ¦Ð |
| 4 |
| x |
| 2 |
| ¦Ð |
| 4 |
| A¡¢1 | B¡¢2 | C¡¢3 | D¡¢4 |
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼
·ÖÎö£ºÓÉżº¯ÊýµÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÔÙ½áºÏ£¨
£¬
£©ÉÏÕýÏÒÖµºÍÓàÏÒÖµµÄ´óС¹ØÏµÅжϢ٣»¸ù¾ÝÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬½áºÏÓÕµ¼¹«Ê½£¬¿ÉÒÔÅжϢڵÄÕæ¼Ù£»ÓÉÈý½ÇÐÎÄڽǵķ¶Î§½áºÏÓàÏÒº¯ÊýµÄµ¥µ÷ÐÔÅжϢۣ»Ö±½ÓÓɺ¯ÊýͼÏóµÄÆ½ÒÆÅжϢܣ®
| ¦Ð |
| 4 |
| ¦Ð |
| 2 |
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬Èôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬Ôòf£¨x£©ÊÇ[0£¬1]Éϵļõº¯Êý£¬Óɦȡʣ¨
£¬
£©£¬µÃsin¦È£¾cos¦È£¬Ôòf£¨sin¦È£©£¼f£¨cos¦È£©£®
¹Ê¢ÙΪ¼ÙÃüÌ⣻
¶ÔÓÚ¢Ú£¬ÈôÈñ½Ç¦Á¡¢¦ÂÂú×ãcos¦Á£¾sin¦Â£¬¼´sin£¨
-¦Á£©£¾sin¦Â£¬¼´
-¦Á£¾¦Â£¬Ôò¦Á+¦Â£¼
£®
¹Ê¢ÚÎªÕæÃüÌ⣻
¶ÔÓÚ¢Û£¬ÔÚ¡÷ABCÖУ¬
¡ßA£¬B¡Ê£¨0¡ã£¬180¡ã£©£¬
ÓÖÓàÏÒº¯ÊýÔÚ£¨0¡ã£¬180¡ã£©ÄÚµ¥µ÷µÝ¼õ£¬
¡àA£¾B?cosA£¼cosB£®
¹ÊÃüÌâ¢ÛÎªÕæÃüÌ⣻
¶ÔÓڢܣ¬ÒªµÃµ½º¯Êýy=sin£¨
-
£©µÄͼÏ󣬼´y=sin
£¨x-
£©£¬
Ö»Ð轫y=sin
µÄͼÏóÏòÓÒÆ½ÒÆ
¸öµ¥Î»£®
¹ÊÃüÌâ¢ÜΪ¼ÙÃüÌ⣮
¡àÕæÃüÌâµÄ¸öÊýÊÇ2¸ö£®
¹ÊÑ¡£ºB£®
| ¦Ð |
| 4 |
| ¦Ð |
| 2 |
¹Ê¢ÙΪ¼ÙÃüÌ⣻
¶ÔÓÚ¢Ú£¬ÈôÈñ½Ç¦Á¡¢¦ÂÂú×ãcos¦Á£¾sin¦Â£¬¼´sin£¨
| ¦Ð |
| 2 |
| ¦Ð |
| 2 |
| ¦Ð |
| 2 |
¹Ê¢ÚÎªÕæÃüÌ⣻
¶ÔÓÚ¢Û£¬ÔÚ¡÷ABCÖУ¬
¡ßA£¬B¡Ê£¨0¡ã£¬180¡ã£©£¬
ÓÖÓàÏÒº¯ÊýÔÚ£¨0¡ã£¬180¡ã£©ÄÚµ¥µ÷µÝ¼õ£¬
¡àA£¾B?cosA£¼cosB£®
¹ÊÃüÌâ¢ÛÎªÕæÃüÌ⣻
¶ÔÓڢܣ¬ÒªµÃµ½º¯Êýy=sin£¨
| x |
| 2 |
| ¦Ð |
| 4 |
| 1 |
| 2 |
| ¦Ð |
| 2 |
Ö»Ð轫y=sin
| x |
| 2 |
| ¦Ð |
| 2 |
¹ÊÃüÌâ¢ÜΪ¼ÙÃüÌ⣮
¡àÕæÃüÌâµÄ¸öÊýÊÇ2¸ö£®
¹ÊÑ¡£ºB£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÈý½Çº¯ÊýµÄÐÔÖÊ£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éè¡÷ABCÖУ¬ADΪÄÚ½ÇAµÄƽ·ÖÏߣ¬½»BC±ßÓÚµãD£¬|
|=3£¬|
|=2£¬¡ÏABC=60¡ã£¬Ôò
•
=£¨¡¡¡¡£©
| AB |
| AC |
| AD |
| BC |
A¡¢-
| ||
B¡¢
| ||
C¡¢-
| ||
D¡¢
|
ͶÖÀһöÕý·½Ìå÷»×Ó£¨Áù¸öÃæÉÏ·Ö±ð±êÓÐ1£¬2£¬3£¬4£¬5£¬6£©£¬ÏòÉϵÄÃæÉϵÄÊý×Ö¼ÇΪa£¬ÓÖn£¨A£©±íʾ¼¯ºÏµÄÔªËØ¸öÊý£¬A={x||x2+ax+3|=1£¬x¡ÊR}£¬Ôòn£¨A£©=4µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|
ÒÑÖªan=
£¬n¡ÊN*£¬ÔòÔÚÊýÁÐ{an}µÄǰ50ÏîÖÐ×îСÏîºÍ×î´óÏî·Ö±ðÊÇ£¨¡¡¡¡£©
n-
| ||
n-
|
| A¡¢a1£¬a50 |
| B¡¢a9£¬a50 |
| C¡¢a9£¬a8 |
| D¡¢a8£¬a9 |
ÏÂÁÐÓйØÃüÌâµÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±ÊÇÕæÃüÌâ | ||||
| B¡¢¡°x=-1¡±ÊÇ¡°x2-5x-6=0¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ | ||||
| C¡¢ÃüÌâ¡°?x¡ÊRʹµÃx2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬ÓÐx2+x+1£¾0¡± | ||||
D¡¢ÃüÌâ¡°Èôx=
|
ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Ôò
=£¨¡¡¡¡£©
| 2+i |
| 3+i |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|