ÌâÄ¿ÄÚÈÝ
11£®Ä³Ê¦·¶ÔºÐ£Ö¾Ô¸ÕßлáÓÐ10Ãûͬѧ£¬³ÉÔ±¹¹³ÉÈç±í£¬ÆäÖбíÖв¿·ÖÊý¾Ý²»Çå³þ£¬Ö»ÖªµÀ´ÓÕâ10ÃûͬѧÖÐËæ»ú³éȡһ룬³éµ½¸ÃÃûͬѧΪ¡°ÖÐÎÄרҵ¡±µÄ¸ÅÂÊΪ$\frac{1}{5}$£®| רҵ ÐÔ±ð | ÖÐÎÄ | Ó¢Óï | Êýѧ | ÌåÓý |
| ÄÐ | m | 1 | n | 1 |
| Å® | 1 | 1 | 1 | 1 |
£¨¢ñ£©Çóm£¬nµÄÖµ£»
£¨¢ò£©ÇóÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»ÏàͬµÄ¸ÅÂÊ£®
£¨¢ó£©Éè¦ÎΪѡ³öµÄ3ÃûͬѧÖС°Å®Éú¡±µÄÈËÊý£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÆäÊýѧÆÚÍûE¦Î£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬$\frac{1+m}{10}=\frac{1}{5}$£®ÓÉ´ËÄÜÇó³öm£¬n£®
£¨¢ò£©ÏÈÇó³ö»ù±¾Ê¼þ×ÜÊý£¬ÔÙÇó³öÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»Ïàͬ£¬°üº¬µÄ»ù±¾Ê¼þ¸öÊý£¬ÓÉ´ËÄÜÇó³öÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»ÏàͬµÄ¸ÅÂÊ£®
£¨¢ó£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®
½â´ð ½â£º£¨¢ñ£©ÉèʼþA£º´Ó10λѧÉúÖÐËæ»ú³éȡһ룬³éµ½¸ÃÃûͬѧΪ¡°ÖÐÎÄרҵ¡±£®ÓÉÌâÒâ¿ÉÖª£¬¡°ÖÐÎÄרҵ¡±µÄѧÉú¹²ÓУ¨1+m£©ÈË£®
ÔòP£¨A£©=$\frac{1+m}{10}=\frac{1}{5}$£®½âµÃm=1£¬
¡àn=10-2-2-2-1=3£®
£¨¢ò£©´ÓÕâ10ÃûͬѧÖÐËæ»úѡȡ3Ãûͬѧ²Î¼ÓÉç»á¹«Òæ»î¶¯£¨Ã¿Î»Í¬Ñ§±»Ñ¡µ½µÄ¿ÉÄÜÐÔÏàͬ£©£¬
»ù±¾Ê¼þ×ÜÊý$n={C}_{10}^{3}$=120£¬
Ñ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»Ïàͬ£¬°üº¬µÄ»ù±¾Ê¼þ¸öÊý£º
m=${C}_{2}^{1}{C}_{2}^{1}{C}_{4}^{1}$+${C}_{2}^{1}{C}_{2}^{1}{C}_{2}^{1}$+${C}_{2}^{1}{C}_{4}^{1}{C}_{2}^{1}$+${C}_{2}^{1}{C}_{4}^{1}{C}_{2}^{1}$=56£¬
¡àÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»ÏàͬµÄ¸ÅÂÊp=$\frac{m}{n}$=$\frac{56}{120}$=$\frac{7}{15}$£®
£¨¢ó£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{20}{120}$£¬
P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{6}^{2}}{{C}_{10}^{3}}$=$\frac{60}{120}$£¬
P£¨¦Î=2£©=$\frac{{C}_{4}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{36}{120}$£¬
P£¨¦Î=3£©=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{4}{120}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 0 | 1 | 2 | 3 |
| P | $\frac{20}{120}$ | $\frac{60}{20}$ | $\frac{36}{120}$ | $\frac{4}{120}$ |
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÒª²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®
| A£® | a£¾b£¾c | B£® | c£¾b£¾a | C£® | c£¾a£¾b | D£® | a£¾c£¾b |
| A£® | ?x£¾0£¬x2£¼0 | B£® | ?x£¾0£¬x2¡Ü0 | C£® | $?{x_0}£¾0£¬{x_0}^2£¼0$ | D£® | $?{x_0}£¾0£¬{x_0}^2¡Ü0$ |
| A£® | {x|x¡Ý-$\frac{5}{3}$} | B£® | {x|x¡Ý-$\frac{5}{3}$ÇÒx¡Ù$\frac{1}{2}$} | C£® | {x|x£¾-$\frac{5}{3}$} | D£® | {x|x¡Ü-$\frac{5}{3}$} |