题目内容

6.已知数列{an},a1=1,an+1=(1+$\frac{1}{n}$)an+$\frac{n+1}{{2}^{n}}$,
(1)设bn=$\frac{{a}_{n}}{n}$,求数列{bn}的通项公式;
(2)求an

分析 (1)化简可得$\frac{{a}_{n+1}}{n+1}$=$\frac{{a}_{n}}{n}$+$\frac{1}{{2}^{n}}$,从而可得bn+1-bn=$\frac{1}{{2}^{n}}$,从而利用累加法求其通项公式;
(2)由bn=$\frac{{a}_{n}}{n}$=2-$\frac{1}{{2}^{n-1}}$可得an=n(2-$\frac{1}{{2}^{n-1}}$).

解答 解:(1)∵an+1=(1+$\frac{1}{n}$)an+$\frac{n+1}{{2}^{n}}$=$\frac{n+1}{n}$an+$\frac{n+1}{{2}^{n}}$,
∴$\frac{{a}_{n+1}}{n+1}$=$\frac{{a}_{n}}{n}$+$\frac{1}{{2}^{n}}$,
∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=$\frac{1}{{2}^{n}}$,
又∵bn=$\frac{{a}_{n}}{n}$,b1=1,
∴bn+1-bn=$\frac{1}{{2}^{n}}$,
∴b2-b1=$\frac{1}{2}$,
b3-b2=$\frac{1}{4}$,
…,
bn-bn-1=$\frac{1}{{2}^{n-1}}$,
累加可得,
bn-b1=$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$,
即bn-b1=$\frac{\frac{1}{2}(1-(\frac{1}{2})^{n-1})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n-1}}$,
故bn=2-$\frac{1}{{2}^{n-1}}$;
(2)∵bn=$\frac{{a}_{n}}{n}$=2-$\frac{1}{{2}^{n-1}}$,
∴an=n(2-$\frac{1}{{2}^{n-1}}$).

点评 本题考查了构造法的应用及累加法的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网