题目内容
1.已知函数f(x)=x${\;}^{-{k}^{2}+k+2}$,且f(2)>f(3),则实数k的取值范围是(-∞,-1)∪(2,+∞).分析 由于给出的函数f(x)=x${\;}^{-{k}^{2}+k+2}$幂函数,且f(2)>f(3),所以减函数,其指数为负,求解一元二次方程得k取值范围.
解答 解:因为f(x)=x${\;}^{-{k}^{2}+k+2}$,且f(2)>f(3),
所以其在(0,+∞)上是减函数,
所以根据幂函数的性质,有-k2+k+2<0,即k2-k-2>0,
所以k<-1或k>2.
故答案为(-∞,-1)∪(2,+∞).
点评 本题考查了幂函数的概念,解答的关键是熟记幂函数的定义及性质,此题是基础题.
练习册系列答案
相关题目
13.已知函数f(x)=$\left\{\begin{array}{l}\frac{1}{x}+1,0<x≤2\\ lnx,\;\;x>2\end{array}$,如果关于x的方程f(x)=k有两个不同的实根,那么实数k的取值范围是( )
| A. | (1,+∞) | B. | $[\frac{3}{2},+∞)$ | C. | $[{e^{\frac{3}{2}}},+∞)$ | D. | [ln2,+∞) |
10.某中学从高三男生中随机抽取100名学生的身高,将数据整理,得到的频率分布表如下所示.
(Ⅰ)求出频率分布表中①和②位置上相应的数据;
(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行体能测试,求第3,4,5组每组各抽取多少名学生进行测试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求:第4组中至少有一名学生被抽中的概率.
(Ⅰ)求出频率分布表中①和②位置上相应的数据;
(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行体能测试,求第3,4,5组每组各抽取多少名学生进行测试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求:第4组中至少有一名学生被抽中的概率.
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.050 |
| 第2组 | [165,170) | ① | 0.350 |
| 第3组 | [170,175) | 30 | ② |
| 第4组 | [175,180) | 20 | 0.200 |
| 第5组 | [180,185] | 10 | 0.100 |
| 合计 | 100 | 1.00 | |