题目内容
已知p∈R,a>b>0比较下列各题中两个代数式值的大小:
(1)(2p+1)(p-3)与(p-6)(p+3)+10;
(2)
与
.
(1)(2p+1)(p-3)与(p-6)(p+3)+10;
(2)
| a2-b2 |
| a2+b2 |
| a-b |
| a+b |
考点:不等式比较大小
专题:不等式的解法及应用
分析:分别根据作差法比较大小即可.
解答:
解:(1)∵(2p+1)(p-3)-[(p-6)(p+3)+10]=p2-2p+5=(p-1)2+4>0,
∴(2p+1)(p-3)>(p-6)(p+3)+10;
(2)
-
=(1-
)-(1-
)=
,
∵a>b>0,
∴2ab>0,a-b>0,a+b>0,a2+b2>0,
∴
>0,
∴
>
.
∴(2p+1)(p-3)>(p-6)(p+3)+10;
(2)
| a2-b2 |
| a2+b2 |
| a-b |
| a+b |
| 2b2 |
| a2+b2 |
| 2b |
| a+b |
| 2ab(a-b) |
| (a+b)(a2+b2) |
∵a>b>0,
∴2ab>0,a-b>0,a+b>0,a2+b2>0,
∴
| 2ab(a-b) |
| (a+b)(a2+b2) |
∴
| a2-b2 |
| a2+b2 |
| a-b |
| a+b |
点评:本题主要考查了最差法比较两个式子的大小关系,属于基础题.
练习册系列答案
相关题目