题目内容
若任意的实数a≤-1,恒有a•2b-b-3a≥0成立,则实数b的取值范围为 .
考点:函数恒成立问题
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:设f(a)=a(2b-3)-b,由题意可得,2b-3<0,且f(-1)≥0恒成立,再由g(x)=x+2x在R上递增,且g(1)=3,解不等式求交集即可.
解答:
解:设f(a)=a(2b-3)-b,
由于任意的实数a≤-1,恒有a•2b-b-3a≥0成立,
则2b-3<0,且f(-1)≥0恒成立,
则有b<log23,且3-b-2b≥0,
由b+2b≤3,又g(x)=x+2x在R上递增,且g(1)=3,
则g(b)≤g(1),解得b≤1.
又b<log23,则有b≤1.
故答案为:(-∞,1].
由于任意的实数a≤-1,恒有a•2b-b-3a≥0成立,
则2b-3<0,且f(-1)≥0恒成立,
则有b<log23,且3-b-2b≥0,
由b+2b≤3,又g(x)=x+2x在R上递增,且g(1)=3,
则g(b)≤g(1),解得b≤1.
又b<log23,则有b≤1.
故答案为:(-∞,1].
点评:本题考查函数恒成立问题,考查构造函数运用单调性解题,考查不等式的解法,考查运算能力,属于中档题和易错题.
练习册系列答案
相关题目
函数f(x)=
的零点个数为( )
|
| A、1 | B、2 | C、3 | D、4 |
已知α∈(-
,0),cosα=
,则tanα等于( )
| π |
| 2 |
| 3 |
| 5 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|