题目内容

16.圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯( Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形ABC,分别以A,B,C为圆心,边长为半径,作圆弧$\widehat{BC},\widehat{CA},\widehat{AB}$,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).

在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为(  )
A.$\frac{π}{8}$B.$\frac{{2π-3\sqrt{3}}}{4}$C.$\frac{{π-\sqrt{2}}}{2}$D.$\frac{{π-\sqrt{3}}}{2}$

分析 以面积为测度,分别计算面积,即可得出结论.

解答 解:设等边三角形的边长为1,则正方形的面积为1,
鲁列斯曲边三角形的面积为$\frac{1}{2}π-2×\frac{\sqrt{3}}{4}$=$\frac{π-\sqrt{3}}{2}$,
∴所求概率为$\frac{π-\sqrt{3}}{2}$,
故选D.

点评 本题考查几何概型,考查概率的计算,正确求面积是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网