题目内容
6.已知数列{an}为等比数列,且a3=-4,a7=-16,则a5=( )| A. | 8 | B. | -8 | C. | 64 | D. | -64 |
分析 由等比数列通项公式知${{a}_{5}}^{2}$=a3•a7,且${a}_{5}={a}_{3}{q}^{2}$=-4q2<0,由此能求出a5的值.
解答 解:∵数列{an}为等比数列,且a3=-4,a7=-16,
∴${{a}_{5}}^{2}$=a3•a7=(-4)•(-16)=64,且${a}_{5}={a}_{3}{q}^{2}$=-4q2<0,
∴a5=-8.
故选:B.
点评 本题考查等比数列的第5项的求法,考查等比数列的性质,考查推理论证能力、运算求解能力,考查转化化归思想,是基础题.
练习册系列答案
相关题目
16.圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯( Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形ABC,分别以A,B,C为圆心,边长为半径,作圆弧$\widehat{BC},\widehat{CA},\widehat{AB}$,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).

在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为( )
在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为( )
| A. | $\frac{π}{8}$ | B. | $\frac{{2π-3\sqrt{3}}}{4}$ | C. | $\frac{{π-\sqrt{2}}}{2}$ | D. | $\frac{{π-\sqrt{3}}}{2}$ |
17.
为比较甲乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(位:℃)制成如图所示的茎叶图,已知甲地该月11时的平均气温比乙地该月11时的平均气温高1℃,则甲地该月11时的平均气温的标准差为( )
| A. | 2 | B. | $\sqrt{2}$ | C. | 10 | D. | $\sqrt{10}$ |
1.已知向量$\overrightarrow{m}$=(-1,2),$\overrightarrow{n}$=(1,λ),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,则$\overrightarrow{m}$+2$\overrightarrow{n}$与$\overrightarrow{m}$的夹角为( )
| A. | $\frac{2π}{3}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |