ÌâÄ¿ÄÚÈÝ
ijÉ̳¡×éÖ¯Óн±¾º²Â»î¶¯£¬²ÎÓëÕßÐèÒªÏÈºó»Ø´ðÁ½µÀÑ¡ÔñÌ⣬ÎÊÌâAÓÐÈý¸öÑ¡ÏÎÊÌâBÓÐËĸöÑ¡Ïµ«¶¼Ö»ÓÐÒ»¸öÑ¡ÏîÊÇÕýÈ·µÄ£¬ÕýÈ·»Ø´ðÎÊÌâA¿É»ñ½±½ð25Ôª£¬ÕýÈ·»Ø´ðÎÊÌâB¿É»ñ½±½ð30Ôª£¬»î¶¯¹æ¶¨£º²ÎÓëÕß¿ÉÈÎÒâÑ¡Ôñ»Ø´ðÎÊÌâµÄ˳Ðò£¬Èç¹ûµÚÒ»¸öÎÊÌâ»Ø´ðÕýÈ·£¬Ôò¼ÌÐø´ðÌ⣬·ñÔò¸Ã²ÎÓëÕ߲½±»î¶¯ÖÕÖ¹£¬¼ÙÉèÒ»¸ö²ÎÓëÕßÔڻشðÎÊÌâǰ£¬¶ÔÕâÁ½¸öÎÊÌâ¶¼ºÜİÉú£¬Ö»ÄÜÓÃÃɲµİ취´ðÌ⣮
£¨1£©Èç¹û²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇóÆä»ñµÃ½±½ð25ÔªµÄ¸ÅÂÊ£»
£¨2£©ÊÔÈ·¶¨ÄÄÖֻشðÎÊÌâµÄ˳ÐòÄÜʹ¸Ã²ÎÓëÕß»ñ½±½ð¶îµÄÆÚÍûÖµ½Ï´ó£®
£¨1£©Èç¹û²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇóÆä»ñµÃ½±½ð25ÔªµÄ¸ÅÂÊ£»
£¨2£©ÊÔÈ·¶¨ÄÄÖֻشðÎÊÌâµÄ˳ÐòÄÜʹ¸Ã²ÎÓëÕß»ñ½±½ð¶îµÄÆÚÍûÖµ½Ï´ó£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©Ëæ»ú²Â¶ÔÎÊÌâAµÄ¸ÅÂÊP1=
£¬Ëæ»ú²Â¶ÔÎÊÌâBµÄ¸ÅÂÊP2=
£®ÓÉ´ËÄÜÇó³ö²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25Ôª¸ÅÂÊ£®
£¨2£©²ÎÓëÕ߻شðÎÊÌâµÄ˳ÐòÓÐÁ½ÖÖ£¬·Ö±ðÌÖÂÛÈçÏ£º¢ÙÏȻشðÎÊÌâAÔٻشðÎÊÌâB£¬²ÎÓëÕß»ñ½±½ð¶î¦Î¿ÉÈ¡0£¬25£¬55£¬¢ÚÏȻشðÎÊÌâBÔٻشðÎÊÌâA£¬²ÎÓëÕß»ñ½±½ð¶î¦Ç¿ÉÈ¡0£¬30£¬55£®·Ö±ðÇó³öÏàÓ¦µÄÆÚÍûÄܵõ½Ó¦¸ÃÏÈ´ðÎÊÌâA£¬ÔÙ´ðÎÊÌâBÄÜʹ¸Ã²ÎÓëÕß»ñ½±½ð¶îµÄÆÚÍûÖµ½Ï´ó£®
| 1 |
| 3 |
| 1 |
| 4 |
£¨2£©²ÎÓëÕ߻شðÎÊÌâµÄ˳ÐòÓÐÁ½ÖÖ£¬·Ö±ðÌÖÂÛÈçÏ£º¢ÙÏȻشðÎÊÌâAÔٻشðÎÊÌâB£¬²ÎÓëÕß»ñ½±½ð¶î¦Î¿ÉÈ¡0£¬25£¬55£¬¢ÚÏȻشðÎÊÌâBÔٻشðÎÊÌâA£¬²ÎÓëÕß»ñ½±½ð¶î¦Ç¿ÉÈ¡0£¬30£¬55£®·Ö±ðÇó³öÏàÓ¦µÄÆÚÍûÄܵõ½Ó¦¸ÃÏÈ´ðÎÊÌâA£¬ÔÙ´ðÎÊÌâBÄÜʹ¸Ã²ÎÓëÕß»ñ½±½ð¶îµÄÆÚÍûÖµ½Ï´ó£®
½â´ð£º
½â£º£¨1£©Ëæ»ú²Â¶ÔÎÊÌâAµÄ¸ÅÂÊP1=
£¬
Ëæ»ú²Â¶ÔÎÊÌâBµÄ¸ÅÂÊP2=
£®
Éè²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25ԪΪʼþM£¬
ÔòP(M)=P1(1-P2)=
¡Á
=
£¬
¼´²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25Ôª¸ÅÂÊΪ
£®£¨5·Ö£©
£¨2£©²ÎÓëÕ߻شðÎÊÌâµÄ˳ÐòÓÐÁ½ÖÖ£¬·Ö±ðÌÖÂÛÈçÏ£º
¢ÙÏȻشðÎÊÌâAÔٻشðÎÊÌâB£¬²ÎÓëÕß»ñ½±½ð¶î¦Î¿ÉÈ¡0£¬25£¬55£¬
ÔòP(¦Î=0)=1-P1=
£¬
P(¦Î=25)=P1(1-P2)=
£¬
P(¦Î=55)=P1P2=
£¨8·Ö£©
E(¦Î)=
£®
¢ÚÏȻشðÎÊÌâBÔٻشðÎÊÌâA£¬²ÎÓëÕß»ñ½±½ð¶î¦Ç¿ÉÈ¡0£¬30£¬55
ÔòP(¦Ç=0)=1-P2=
£¬
P(¦Ç=30)=P2(1-P1)=
£¬
P(¦Ç=55)=P1P2=
£¬
E(¦Ç)=
£®
ÒòΪE£¨¦Î£©£¾E£¨¦Ç£©£¬ËùÒÔÓ¦¸ÃÏÈ´ðÎÊÌâA£¬ÔÙ´ðÎÊÌâB£®£¨12·Ö£©
| 1 |
| 3 |
Ëæ»ú²Â¶ÔÎÊÌâBµÄ¸ÅÂÊP2=
| 1 |
| 4 |
Éè²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25ԪΪʼþM£¬
ÔòP(M)=P1(1-P2)=
| 1 |
| 3 |
| 3 |
| 4 |
| 1 |
| 4 |
¼´²ÎÓëÕßÏȻشðÎÊÌâA£¬ÇÒ»ñµÃ½±½ð25Ôª¸ÅÂÊΪ
| 1 |
| 4 |
£¨2£©²ÎÓëÕ߻شðÎÊÌâµÄ˳ÐòÓÐÁ½ÖÖ£¬·Ö±ðÌÖÂÛÈçÏ£º
¢ÙÏȻشðÎÊÌâAÔٻشðÎÊÌâB£¬²ÎÓëÕß»ñ½±½ð¶î¦Î¿ÉÈ¡0£¬25£¬55£¬
ÔòP(¦Î=0)=1-P1=
| 2 |
| 3 |
P(¦Î=25)=P1(1-P2)=
| 1 |
| 4 |
P(¦Î=55)=P1P2=
| 1 |
| 12 |
E(¦Î)=
| 130 |
| 12 |
¢ÚÏȻشðÎÊÌâBÔٻشðÎÊÌâA£¬²ÎÓëÕß»ñ½±½ð¶î¦Ç¿ÉÈ¡0£¬30£¬55
ÔòP(¦Ç=0)=1-P2=
| 3 |
| 4 |
P(¦Ç=30)=P2(1-P1)=
| 1 |
| 6 |
P(¦Ç=55)=P1P2=
| 1 |
| 12 |
E(¦Ç)=
| 115 |
| 12 |
ÒòΪE£¨¦Î£©£¾E£¨¦Ç£©£¬ËùÒÔÓ¦¸ÃÏÈ´ðÎÊÌâA£¬ÔÙ´ðÎÊÌâB£®£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
·½³Ìx2+y2+2ax+2by+a2+b2=0±íʾµÄͼÐÎÊÇ£¨¡¡¡¡£©
| A¡¢ÒÔ£¨a£¬b£©ÎªÔ²ÐĵÄÔ² |
| B¡¢ÒÔ£¨-a£¬-b£©ÎªÔ²ÐĵÄÔ² |
| C¡¢µã£¨a£¬b£© |
| D¡¢µã£¨-a£¬-b£© |
ÈçͼËùʾ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1cm£¬´ÖʵÏßΪij¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
| A¡¢2cm3 |
| B¡¢4cm3 |
| C¡¢6cm3 |
| D¡¢8cm3 |
Éèm¡¢nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÏÂÁÐÃüÌâÖдíÎóµÄÊÇ£¨¡¡¡¡£©
| A¡¢Èôm¡Í¦Á£¬m¡În£¬n¡Î¦Â£¬Ôò¦Á¡Í¦Â |
| B¡¢Èô¦Á¡Í¦Â£¬m?¦Á£¬m¡Í¦Â£¬Ôòm¡Î¦Á |
| C¡¢Èôm¡Í¦Â£¬m?¦Á£¬Ôò¦Á¡Í¦Â |
| D¡¢Èô¦Á¡Í¦Â£¬m?¦Á£¬n?¦Â£¬Ôòm¡Ín |
º¯Êýf£¨x£©=
µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
| lg(x2-1) | ||
|
| A¡¢£¨-¡Þ£¬-2£©¡È£¨1£¬+¡Þ£© |
| B¡¢£¨-2£¬1£© |
| C¡¢£¨-¡Þ£¬-1£©¡È£¨2£¬+¡Þ£© |
| D¡¢£¨1£¬2£© |