题目内容

若直线y=kx-k交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=(  )
A、12B、10C、8D、6
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离.
解答: 解:直线y=kx-k恒过(1,0),恰好是抛物线y2=4x的焦点坐标,
设A(x1,y1) B(x2,y2
抛物y2=4x的线准线x=-1,线段AB中点到y轴的距离为3,x1+x2=6,
∴|AB|=|AF|+|BF|=x1+x2+2=8,
故选:C.
点评:本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网