题目内容

3.△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积S=$\frac{\sqrt{3}}{2}$accosB.
(1)求角B的大小;
(2)若a=2$\sqrt{15}$,点D在AB的延长线上,且AD=3,cos∠ADC=$\frac{2}{3}$,求b的值.

分析 (1)由已知利用三角形面积公式,同角三角函数基本关系式可求tanB=$\sqrt{3}$,由特殊角的三角函数值即可得解B的值.
(2)由已知可求∠CBD=$\frac{2π}{3}$,sin∠ADC=$\frac{\sqrt{5}}{3}$,由正弦定理解得CD,进而在△ADC中,由余弦定理可得b的值.

解答 (本题满分为12分)
解:(1)∵S=$\frac{\sqrt{3}}{2}$accosB=$\frac{1}{2}$acsinB,
∴tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$.
(2)如图,∵B=$\frac{π}{3}$.∴∠CBD=$\frac{2π}{3}$,
∵cos∠ADC=$\frac{2}{3}$,∴sin∠ADC=$\sqrt{1-co{s}^{2}∠ADC}$=$\frac{\sqrt{5}}{3}$,
∴在△BCD中,由正弦定理$\frac{CD}{sin∠CBD}=\frac{BC}{sin∠BDC}$,可得:$\frac{CD}{sin\frac{2π}{3}}=\frac{2\sqrt{15}}{\frac{\sqrt{5}}{3}}$,解得:CD=9,
∴在△ADC中,由余弦定理可得:b2=AD2+CD2-2AD•CD•cos∠ADC=9+81-2×$3×9×\frac{2}{3}$=54.
∴b=3$\sqrt{6}$.

点评 本题主要考查了三角形面积公式,同角三角函数基本关系式,特殊角的三角函数值,正弦定理,余弦定理在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网