题目内容

8.已知菱形ABCD中,∠DAB=60°,AB=3,对角线AC与BD的交点为O,把菱形ABCD沿对角线BD折起,使得∠AOC=90°,则折得的几何体的外接球的表面积为(  )
A.15πB.$\frac{15π}{2}$C.$\frac{7π}{2}$D.

分析 利用几何体求出外接球的半径,然后求解几何体的表面积即可.

解答 解:菱形ABCD中,∠DAB=60°,AB=3,三角形ABD的外接圆的半径为:$\frac{2}{3}×\frac{\sqrt{3}}{2}×3$=$\sqrt{3}$,内切圆的半径为:$\frac{\sqrt{3}}{2}$,对角线AC与BD的交点为O,把菱形ABCD沿对角线BD折起,使得∠AOC=90°,
则折得的几何体的外接球的半径为:$\sqrt{(\sqrt{3})^{2}+({\frac{\sqrt{3}}{2})}^{2}}$=$\frac{\sqrt{15}}{2}$.
外接球的表面积为:4$π×(\frac{\sqrt{15}}{2})^{2}$=15π.
故选:A.

点评 本题考查几何体的外接球的表面积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关题目
19.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图):
(1)试根据频率分布直方图估计小区平均每户居民的平均损失;
(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过6000元的居民中随机抽出2户进行捐款援助,求抽出的2户居民损失均超过8000元的概率;
(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在图2表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?
经济损失不超过4000元经济损失超过4000元合计
捐款超过500元30
捐款不超过500元6
合计
附:临界值参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网