题目内容

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)实轴长为2,且经过点(2,3),则双曲线的渐近线方程为(  )
A.y=±$\frac{3}{2}$xB.y=±$\frac{{\sqrt{3}}}{2}$xC.y=±3xD.y=±$\sqrt{3}$x

分析 利用双曲线的实轴长以及经过的点,求出b,然后求解双曲线的渐近线方程.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)实轴长为2,且经过点(2,3),
可得$\frac{4}{1}-\frac{9}{{b}^{2}}=1$,解得b=$\sqrt{3}$.
则双曲线的渐近线方程为:y=$±\sqrt{3}x$.
故选:D.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网