题目内容
7.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N+),若数列{bn}满足${b_1}=1,{b_n}+{b_{n+1}}=\frac{1}{a_n}(n∈{N_+})$,则数列{bn}的前2n+3项和T2n+3=$\frac{{{4^{n+2}}-1}}{{3×{4^{n+1}}}}$.分析 Sn=2an-2(n∈N+),可得n≥2时,an=Sn-Sn-1,化为:an=2an-1.n=1时,a1=2a1-2,解得a1.利用等比数列的通项公式可得:an=2n.数列{bn}满足${b_1}=1,{b_n}+{b_{n+1}}=\frac{1}{a_n}(n∈{N_+})$,可得bn+bn+1=$\frac{1}{{2}^{n}}$.则数列{bn}的前2n+3项和T2n+3=b1+(b2+b3)+…+(b2n+2+b2n+3),利用等比数列的求和公式即可得出.
解答 解:∵Sn=2an-2(n∈N+),∴n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),化为:an=2an-1.
n=1时,a1=2a1-2,解得a1=2.
∴数列{an}是等比数列,首项与公比都为2.
∴an=2n.
数列{bn}满足${b_1}=1,{b_n}+{b_{n+1}}=\frac{1}{a_n}(n∈{N_+})$,∴bn+bn+1=$\frac{1}{{2}^{n}}$.
则数列{bn}的前2n+3项和T2n+3=b1+(b2+b3)+…+(b2n+2+b2n+3)
=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{2n+2}}$
=$\frac{1-(\frac{1}{4})^{n+2}}{1-\frac{1}{4}}$=$\frac{{{4^{n+2}}-1}}{{3×{4^{n+1}}}}$.
故答案为:$\frac{{{4^{n+2}}-1}}{{3×{4^{n+1}}}}$.
点评 本题考查了等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)实轴长为2,且经过点(2,3),则双曲线的渐近线方程为( )
| A. | y=±$\frac{3}{2}$x | B. | y=±$\frac{{\sqrt{3}}}{2}$x | C. | y=±3x | D. | y=±$\sqrt{3}$x |
19.已知全集U={-2,-1,0,1,2},集合M={0,1},N={0,1,2},则(∁UM)∩N=( )
| A. | {0,2} | B. | {1,2} | C. | {2} | D. | {0} |
16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的两个焦点分别为F1,F2,若椭圆上不存在点P,使得∠F1PF2是钝角,则椭圆离心率的取值范围是( )
| A. | $(0,\frac{{\sqrt{2}}}{2}]$ | B. | $[\frac{{\sqrt{2}}}{2},1)$ | C. | $(0,\frac{1}{2})$ | D. | $[\frac{1}{2},1)$ |