题目内容

7.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N+),若数列{bn}满足${b_1}=1,{b_n}+{b_{n+1}}=\frac{1}{a_n}(n∈{N_+})$,则数列{bn}的前2n+3项和T2n+3=$\frac{{{4^{n+2}}-1}}{{3×{4^{n+1}}}}$.

分析 Sn=2an-2(n∈N+),可得n≥2时,an=Sn-Sn-1,化为:an=2an-1.n=1时,a1=2a1-2,解得a1.利用等比数列的通项公式可得:an=2n.数列{bn}满足${b_1}=1,{b_n}+{b_{n+1}}=\frac{1}{a_n}(n∈{N_+})$,可得bn+bn+1=$\frac{1}{{2}^{n}}$.则数列{bn}的前2n+3项和T2n+3=b1+(b2+b3)+…+(b2n+2+b2n+3),利用等比数列的求和公式即可得出.

解答 解:∵Sn=2an-2(n∈N+),∴n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),化为:an=2an-1
n=1时,a1=2a1-2,解得a1=2.
∴数列{an}是等比数列,首项与公比都为2.
∴an=2n
数列{bn}满足${b_1}=1,{b_n}+{b_{n+1}}=\frac{1}{a_n}(n∈{N_+})$,∴bn+bn+1=$\frac{1}{{2}^{n}}$.
则数列{bn}的前2n+3项和T2n+3=b1+(b2+b3)+…+(b2n+2+b2n+3
=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{4}}$+…+$\frac{1}{{2}^{2n+2}}$
=$\frac{1-(\frac{1}{4})^{n+2}}{1-\frac{1}{4}}$=$\frac{{{4^{n+2}}-1}}{{3×{4^{n+1}}}}$.
故答案为:$\frac{{{4^{n+2}}-1}}{{3×{4^{n+1}}}}$.

点评 本题考查了等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网