题目内容
11.化简sin600°的值是( )| A. | 0.5 | B. | -0.5 | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
分析 利用诱导公式及特殊角的三角函数值化简即可求值得解.
解答 解:sin600°=sin(360°+180°+60°)=-sin60°=-$\frac{\sqrt{3}}{2}$.
故选:D.
点评 本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.
练习册系列答案
相关题目
2.直线l过点P(-1,2)且与以点M(-3,-2)、N(4,0)为端点的线段恒相交,则l的斜率取值范围是( )
| A. | [-$\frac{2}{5}$,5] | B. | [-$\frac{2}{5}$,0)∪(0,2] | C. | (-∞,-$\frac{2}{5}$]∪[5,+∞) | D. | (-∞,-$\frac{2}{5}$]∪[2,+∞) |
19.某位同学在2015年5月进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了5月1日至5月5日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如下数据:
(1)若从这五组数据中随机抽出2组,求抽出的2组数据不是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| 日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
| 平均气温x(°C) | 9 | 10 | 12 | 11 | 8 |
| 销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
20.设△ABC内角A,B,C的对边分别为a,b,c,已知A=60°,b=16,S△ABC=220$\sqrt{3}$,则a的值是( )
| A. | 20$\sqrt{6}$ | B. | 75 | C. | 51 | D. | 49 |