题目内容
5.若离散型随机变量ξ的概率分布如表所示,则a的值为( )| ξ | -1 | 1 |
| P | 4a-1 | 3a2+a |
| A. | $\frac{1}{3}$ | B. | -2 | C. | $\frac{1}{3}$或-2 | D. | $\frac{1}{2}$ |
分析 利用离散型随机变量ξ的概率分布列的性质列出不等式组,由此能求出结果.
解答 解:由离散型随机变量ξ的概率分布表知:
$\left\{\begin{array}{l}{0≤4a-1≤1}\\{0≤3{a}^{2}+a≤1}\\{4a-1+3{a}^{2}+a=1}\end{array}\right.$,
解得a=$\frac{1}{3}$.
故选:A.
点评 本题考查实数值的求法,考查离散型随机变量的分布列等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想、考查函数与方程思想,是基础题.
练习册系列答案
相关题目
10.(${x}^{2}-\frac{1}{x}$)6的展开式的中间一项为( )
| A. | -20x3 | B. | 20x3 | C. | -20 | D. | 20 |
17.下列函数中,最小正周期为$\frac{π}{2}$的是( )
| A. | y=|sinx| | B. | y=sinxcosx | C. | y=|tanx| | D. | y=cos4x |
15.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至11月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x元和销售量y件之间的一组数据如表所示:
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.
| 月份 | 7 | 8 | 9 | 10 | 11 |
| 销售单价x元 | 9 | 9.5 | 10 | 10.5 | 11 |
| 销售量y件 | 11 | 10 | 8 | 6 | 5 |
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.