题目内容
18.已知函数f(x)=sinx-cosx,把f(x)的图象左移$\frac{π}{4}$个单位,得到g(x)的图象,则g(x)的解析式为( )| A. | g(x)=$\sqrt{2}$sinx | B. | g(x)=-$\sqrt{2}$sinx | C. | g(x)=$\sqrt{2}$cosx | D. | g(x)=-$\sqrt{2}$cosx |
分析 利用两角差的正弦公式化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:把函数f(x)=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$)的图象左移$\frac{π}{4}$个单位,得到g(x)=$\sqrt{2}$sinx的图象,
故选:A.
点评 本题主要考查两角差的正弦公式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
8.
如图所示的程序框图描述的算法称为“欧几里得”辗转相除法,若输入m=2821,n=2015,则输出的m的值为( )
| A. | 1 | B. | 403 | C. | 806 | D. | 2015 |
6.一个几何体的三视图如图所示,则该几何体的体积等于( )

| A. | 16 | B. | 24 | C. | 48 | D. | 72 |
10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x>0}\\{2f(x+10),x≤0}\end{array}\right.$,则f(-2)等于( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
7.母线长为1的圆锥的侧面展开图的圆心角为$\frac{4}{3}$π,则该圆锥的体积是( )
| A. | $\frac{2\sqrt{5}}{81}$π | B. | $\frac{4\sqrt{5}}{27}$π | C. | $\frac{4\sqrt{5}}{81}$π | D. | $\frac{\sqrt{10}}{81}$π |
8.把复数z的共轭复数记作$\overline{z}$,若(1+i)z=1-i,i为虚数单位,则$\overline{z}$=( )
| A. | i | B. | -i | C. | 1-i | D. | 1+i |