题目内容

求证:
1
2×3
+
1
4×5
+…+
1
(2n)(2n+1)
1
3
考点:反证法与放缩法
专题:选作题,反证法
分析:利用(2n)(2n+1)>(2n-1)(2n+1),可得
1
(2n)(2n+1)
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),即可证明结论.
解答: 证明:∵(2n)(2n+1)>(2n-1)(2n+1),
1
(2n)(2n+1)
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
1
2×3
+
1
4×5
+…+
1
(2n)(2n+1)
1
6
+
1
2
(+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
6
+
1
2
1
3
-
1
2n+1
)<
1
3

1
2×3
+
1
4×5
+…+
1
(2n)(2n+1)
1
3
点评:本题考查放缩法,考查学生分析解决问题的能力,利用
1
(2n)(2n+1)
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
)是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网