题目内容

若等差数列{an}中,a8≥15,a9≤13,则a13的取值范围是
 
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:由已知条件推导出
a1+7d≥15
-a1-8d≥-13
,从而得到d≤-2,由此能求出a13的取值范围.
解答: 解:等差数列{an}中,
∵a8≥15,a9≤13,
a1+7d≥15
a1+8d≤13
,∴
a1+7d≥15
-a1-8d≥-13

∴-d≥2,d≤-2.
∴a13=a9+4d≤13+4×(-2)=5.
∴a13的取值范围是(-∞,5].
故答案为:(-∞,5].
点评:本题考查数列的第13项的取值范围的求法,解题时要认真审题,注意等差数列的性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网