题目内容
①PB⊥AD;
②平面PAB⊥平面PAE;
③BC∥平面PAE;
④直线PD与平面ABC所成的角为45°.
考点:棱锥的结构特征
专题:空间位置关系与距离
分析:利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.
解答:
解:∵AD与PB在平面的射影AB不垂直,∴①不成立;
∵PA⊥平面ABC,AE⊥AB,∴平面PAB⊥平面PAE,故②成立;
∵BC∥AD∥平面PAD,∴直线BC∥平面PAE也不成立,即③不成立.
在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.
故答案为:②④.
∵PA⊥平面ABC,AE⊥AB,∴平面PAB⊥平面PAE,故②成立;
∵BC∥AD∥平面PAD,∴直线BC∥平面PAE也不成立,即③不成立.
在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.
故答案为:②④.
点评:本题考查命题真假的判断,是中档题,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用.
练习册系列答案
相关题目
已知双曲线
+
=1的离心率为3,有一个焦点与抛物线y=
x2的焦点相同,那么双曲线的渐近线方程为( )
| x2 |
| m |
| y2 |
| n |
| 1 |
| 12 |
A、2
| ||
B、x±2
| ||
| C、x±2y=0 | ||
| D、2x±y=0 |