题目内容
18.已知函数f(x)=2x+x+1,g(x)=log2x+x+1,h(x)=log2x-1的零点依次为a,b,c,则( )| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
分析 分别求三个函数的零点,判断零点的范围,从而得到结果.
解答 A解:令函数f(x)=2x+x+1=0,可知x<0,即a<0;令g(x)=log2x+x+1=0,则0<x<1,即0<b<1;
令h(x)=log2x-1=0,可知x=2,即c=2.显然a<b<c.
故选A.
点评 函数的零点问题,关键是能够确定零点或判断零点的范围.本题是基础题目,难度不大.
练习册系列答案
相关题目
8.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线与抛物线x2=4y的准线所围成的三角形面积为2,则双曲线的离心率为( )
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
9.已知集合A={x|(x-1)2≤3x-3,x∈R},B={y|y=3x+2,x∈R},则A∩B=( )
| A. | (2,+∞) | B. | (4,+∞) | C. | [2,4] | D. | (2,4] |
6.已知直线y=k(x+1)与不等式组$\left\{\begin{array}{l}{x+y-4≤0}\\{3x-y≥0}\\{x>0,y>0}\end{array}\right.$表示的区域有公共点,则k的取值范围为( )
| A. | [0,+∞) | B. | [0,$\frac{3}{2}$] | C. | (0,$\frac{3}{2}$] | D. | ($\frac{3}{2}$,+∞) |
5.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=3,b=4,c=6,则cosB等于( )
| A. | $\frac{43}{48}$ | B. | $-\frac{11}{24}$ | C. | $\frac{29}{36}$ | D. | $\frac{11}{48}$ |