题目内容

4.已知{an}是一个单调递增的等差数列,且满足$\sqrt{21}$是a2,a4的等比中项,a1+a5=10.数列{bn}满足${b_n}=\frac{a_n}{2^n}$.
(1)求数列{an}的通项公式an
(2)求数列{bn}的前n项和Tn

分析 (1)设等差数列{an}的公差为d,运用等比数列的中项的性质和等差数列的通项公式即可得出;
(2)利用数列的求和方法:“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,则依题知d>0.
由2a3=a1+a5=10,又可得a3=5.
由$\sqrt{21}$是a2,a4的等比中项,可得a2a4=21,
得(5-d)(5+d)=21,可得d=2.
∴a1=a3-2d=1.可得an=2n-1(n∈N*);
(2)由(1)得${b_n}=\frac{a_n}{2^n}$=(2n-1)•($\frac{1}{2}$)n
∴Tn=1•$\frac{1}{2}$+3•$\frac{1}{4}$+5•$\frac{1}{8}$+…+(2n-1)•($\frac{1}{2}$)n,①
∴$\frac{1}{2}$Tn=1•$\frac{1}{4}$+3•$\frac{1}{8}$+5•$\frac{1}{16}$+…+(2n-1)•($\frac{1}{2}$)n+1,②
①-②得,$\frac{1}{2}$Tn=$\frac{1}{2}$+2($\frac{1}{4}$+$\frac{1}{8}$+…+($\frac{1}{2}$)n)-(2n-1)•($\frac{1}{2}$)n+1
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-1)•($\frac{1}{2}$)n+1
∴Tn=3-$\frac{2n+3}{{2}^{n}}$.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网