题目内容
16.已知定义在R上的函数f(x),其导函数为f'(x),若f'(x)-f(x)<-2,f(0)=3,则不等式f(x)>ex+2的解集是( )| A. | (-∞,1) | B. | (1,+∞) | C. | (0,+∞) | D. | (-∞,0) |
分析 问题转化为$\frac{f(x)}{e^x}-\frac{2}{e^x}-1>0$,令$g(x)=\frac{f(x)-2}{e^x}-1$,根据函数的单调性求出不等式的解集即可.
解答 解:f(x)>ex+2转化为:
$\frac{f(x)}{e^x}-\frac{2}{e^x}-1>0$,
令$g(x)=\frac{f(x)-2}{e^x}-1$,
则$g'(x)=\frac{f'(x)-f(x)+2}{e^x}<0$,
∴g(x)在R上单调递减,
又∵$g(0)=\frac{f(0)}{e^o}-\frac{2}{e^o}-1=0$
∴g(x)>0的解集为(-∞,0),
故选:D.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.
练习册系列答案
相关题目
19.某海滨浴场的海浪高度y(米)是时间t(0≤t≤24),单位:小时)的函数,记为y=f(x),下表是某日各时的浪高数据:
经长期观察,y=f(t)的曲线可以近似地看出是函数y=Acos(ωt)+k(A>0)的曲线.浴场规定:当海浪高度高于1米时才对冲浪爱好者开放,根据以上数据,当天上午8:00时至晚上20:00时之间可供冲浪爱好者冲浪的时间约为多少时?( )
| t时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y米 | 1.5 | 1.0 | 0.5 | 0.98 | 1.5 | 1.01 | 0.5 | 0.99 | 1.5 |
| A. | 10小时 | B. | 8小时 | C. | 6小时 | D. | 4小时 |
4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( )
| A. | ρcosθ=1 | B. | ρsinθ=1 | C. | ρ=cosθ | D. | ρ=sinθ |
1.已知定义在(0,+∞)上的函数$f(x)=\frac{1}{2}{x^2}+2ax,g(x)=3{a^2}lnx+b$,其中a>0.设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同.则b的最大值为( )
| A. | $\frac{3}{2}{e^2}$ | B. | $\frac{3}{2}{e^{\frac{2}{3}}}$ | C. | $\frac{2}{3}{e^{\frac{2}{3}}}$ | D. | $\frac{1}{3}{e^{\frac{1}{3}}}$ |
8.已知函数y=x2的图象在点(x0,x02)处的切线为直线l,若直线l与函数y=lnx(x∈(0,1))的图象相切,则满足( )
| A. | x0∈($\sqrt{2}$,$\sqrt{3}$) | B. | x0∈(1,$\sqrt{2}$) | C. | x0∈(0,$\frac{1}{2}$) | D. | x0∈($\frac{1}{2}$,1) |
5.不等式$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的区域面积大于或等于$\frac{3}{2}$,则实数k的取值范围是( )
| A. | k≥1 | B. | k≥2 | C. | k≥3 | D. | k≥4 |
6.已知命题p:t=π,命题$q:\int_0^t{sinxdx=1}$,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |