ÌâÄ¿ÄÚÈÝ
7£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïß${C_1}£ºy=\sqrt{3}x$£¬ÇúÏßC2µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\sqrt{3}+cos¦È\\ y=-2+sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¨1£©ÇóC1µÄ¼«×ø±ê·½³ÌºÍC2µÄÆÕͨ·½³Ì£»
£¨2£©°ÑC1ÈÆ×ø±êÔµãÑØÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{3}$µÃµ½Ö±ÏßC3£¬C3ÓëC2½»ÓÚA£¬BÁ½µã£¬Çó|AB|£®
·ÖÎö £¨1£©ÓÉÖ±ÏßC1µÄÖ±½Ç×ø±ê·½³ÌÄÜÇó³öÖ±ÏßC1µÄ¼«×ø±ê·½³Ì£¬ÇúÏßC2µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬ÄÜÇó³öÇúÏßC2µÄÆÕͨ·½³Ì£®
£¨2£©°ÑC1ÈÆ×ø±êÔµãÑØÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{3}$µÃµ½Ö±ÏßC3µÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{2¦Ð}{3}£¨¦Ñ¡ÊR£©$£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ$y=-\sqrt{3}x$£®Çó³öÔ²C2µÄÔ²ÐÄ£¨$\sqrt{3}$£¬2£©µ½Ö±ÏßC3£º$\sqrt{3}x+y=0$µÄ¾àÀ룬ÓÉ´ËÀûÓù´¹É¶¨ÀíÄÜÇó³ö|AB|£®
½â´ð ½â£º£¨1£©¡ßÖ±Ïß${C_1}£ºy=\sqrt{3}x$£¬
¡àÖ±ÏßC1µÄ¼«×ø±ê·½³ÌΪ$¦Ñsin¦È=\sqrt{3}¦Ñcos¦È£¬¼´¦È=\frac{¦Ð}{3}£¨¦Ñ¡ÊR£©$£¬
¡ßÇúÏßC2µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\sqrt{3}+cos¦È\\ y=-2+sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊý¦È£¬µÃÇúÏßC2µÄÆÕͨ·½³ÌΪ${£¨x-\sqrt{3}£©^2}+{£¨y+2£©^2}=1$£®
£¨2£©¡ß°ÑC1ÈÆ×ø±êÔµãÑØÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{3}$µÃµ½Ö±ÏßC3£¬
¡àC3µÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{2¦Ð}{3}£¨¦Ñ¡ÊR£©$£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ$y=-\sqrt{3}x$£®
Ô²C2µÄÔ²ÐÄ£¨$\sqrt{3}$£¬2£©µ½Ö±ÏßC3£º$\sqrt{3}x+y=0$µÄ¾àÀ룺
$d=\frac{{|{-3+2}|}}{2}=\frac{1}{2}$£®
¡à$|{AB}|=2\sqrt{{1^2}-\frac{1}{4}}=\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éÖ±Ïߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | 312 | B£® | 288 | C£® | 480 | D£® | 456 |
| A£® | -$\frac{1}{2}$ | B£® | 1 | C£® | 2 | D£® | 4 |
| A£® | £¨-¡Þ£¬1£© | B£® | £¨1£¬+¡Þ£© | C£® | £¨0£¬+¡Þ£© | D£® | £¨-¡Þ£¬0£© |
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{2}{5}$ |