题目内容

5.不等式$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的区域面积大于或等于$\frac{3}{2}$,则实数k的取值范围是(  )
A.k≥1B.k≥2C.k≥3D.k≥4

分析 画出不等式组$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的平面区域,求出区域面积,利用面积列不等式求k的取值范围.

解答 解:画出不等式组$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的平面区域如图阴影部分所示;

由$\left\{\begin{array}{l}{y=2x}\\{x+y=k}\end{array}\right.$,解得A($\frac{k}{3}$,$\frac{2k}{3}$),
由$\left\{\begin{array}{l}{y-\frac{1}{2}x=0}\\{x+y=k}\end{array}\right.$,解得点B($\frac{2k}{3}$,$\frac{k}{3}$);
所以阴影部分面积为
S=S△OAC-S△OBC=$\frac{1}{2}$•k•$\frac{2k}{3}$-$\frac{1}{2}$•k•$\frac{k}{3}$=$\frac{{k}^{2}}{3}$-$\frac{{k}^{2}}{6}$=$\frac{{k}^{2}}{6}$,
令$\frac{{k}^{2}}{6}$≥$\frac{3}{2}$,解得k≥3或k≤-3(不合题意,舍去);
所以实数k的取值范围是k≥3.
故选:C.

点评 本题考查了简单的线性规划问题,也考查了数形结合思想,是综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网