题目内容

1.已知cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,0<α<$\frac{π}{4}$,求sinα和cos(2α+$\frac{π}{4}$)的值.

分析 由条件利用同角三角函数的基本关系,求得sin(α+$\frac{π}{4}$)的值,利用两角和差的三角公式可得sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]的值,再求出cosα,可得cos(2α+$\frac{π}{4}$)的值.

解答 解:∵cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,0<α<$\frac{π}{4}$,∴sin(α+$\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(α+\frac{π}{4})}$=$\frac{4}{5}$,
∴sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{4}{5}•\frac{\sqrt{2}}{2}$-$\frac{3}{5}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{10}$,
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{7\sqrt{2}}{10}$,
∴cos(2α+$\frac{π}{4}$)=sin(α+$\frac{π}{4}$)cosα+cos(α+$\frac{π}{4}$)sinα=$\frac{4}{5}•\frac{7\sqrt{2}}{10}$+$\frac{3}{5}•\frac{\sqrt{2}}{10}$=$\frac{31\sqrt{2}}{50}$.

点评 本题主要考查同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网