题目内容

11.求证:$\frac{si{n}^{2}α}{1+cotα}$+$\frac{co{s}^{2}α}{1+tanα}$=1-sinαcosα.

分析 利用切化弦以及立方和公式化简求解即可.

解答 证明:$\frac{si{n}^{2}α}{1+cotα}$+$\frac{co{s}^{2}α}{1+tanα}$=$\frac{si{n}^{2}α}{1+\frac{cosα}{sinα}}+\frac{co{s}^{2}α}{1+\frac{sinα}{cosα}}$=$\frac{si{n}^{3}α+co{s}^{3}α}{sinα+cosα}$=sin2α-sinα•cosα+cos2α=1-sinαcosα
∴$\frac{si{n}^{2}α}{1+cotα}$+$\frac{co{s}^{2}α}{1+tanα}$=1-sinαcosα.

点评 本题考查三角函数的恒等式的证明,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网