题目内容

在已知数列{an}中,a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n为正整数.
(Ⅰ)证明:数列{lg(an+1)}为等比数列;
(Ⅱ)令bn=an+1,设数列{bn}的前n项积为Tn,即Tn=(a1+1)…(an+1),求lgTn
(Ⅲ)在(Ⅱ)的条件下,记Cn=
lgTn+1
[lg(an+1+1)-1][lg(an+2+1)-1]
,设数列{Cn}的前n项和为Sn,求证Sn<1.
考点:数列与函数的综合,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得an+1+1=(an+1)2,两边取对数,得lg(an+1+1)=2lg(an+1),由此能证明数列{lg(an+1)}是以1为首项,以2为公比的等比数列.
(Ⅱ)由(Ⅰ)知lg(an+1)=2n-1,从而lgTn=lg(a1+1)+lg(a2+1)+…+lg(an+1),由此求出lgTn=2n-1.
(Ⅲ)由Cn=
2n
(2n-1)(2n+1-1)
=
1
2n-1
-
1
2n+1-1
,利用裂项求和法能求出数列{Cn}的前n项和.
解答: (Ⅰ)证明:∵数列{an}中,a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,
an+1=an2+2an,∴an+1+1=(an+1)2
an+1+1=(an+1)2两边取对数,得lg(an+1+1)=2lg(an+1),
∵a1=9,∴lg(a1+1)=lg10=1,
∴数列{lg(an+1)}是以1为首项,以2为公比的等比数列.
(Ⅱ)解:由(Ⅰ)知lg(an+1)=2n-1
Tn=(a1+1)…(an+1),
∴lgTn=lg(a1+1)(a2+1)…(an+1)
=lg(a1+1)+lg(a2+1)+…+lg(an+1)
=20+21+22+…+2n-1
=
1-2n
1-2
=2n-1.
(Ⅲ)证明:Cn=
lgTn+1
[lg(an+1+1)-1][lg(an+2+1)-1]

=
2n
(2n-1)(2n+1-1)
=
1
2n-1
-
1
2n+1-1

Sn=(
1
2-1
-
1
22-1
)+(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)+…+(
1
2n-1
-
1
2n+1-1

=1-
1
2n+1-1
<1.
∴Sn<1.
点评:本题考查等比数列的证明,考查数列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网